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The problem T

= Aim: Develop a predictive k-€ RANS model for transonic jet-
in-crossflow (JinC) simulations
"= Drawback: RANS simulations are simply not predictive

= They have “model-form” error i.e., missing physics

= The numerical constants/parameters in the k-¢ model are usually
derived from canonical flows

= Hypothesis
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= One can calibrate RANS to jet-in-crossflow experiments; thereafter the

residual error is mostly model-form error

= Due to model-form error and limited experimental measurements, the

parameter estimates will be approximate
We will estimate parameters as probability density functions (PDF)

= We then address the model-form error with an enriched eddy
viscosity model for the missing physics
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The equations ) e,

= The model
= Devising a method to calibrate k-¢ parameters from expt. data
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= Sources of errors
= Parameters {C,, C,} are obtained from canonical flows
= C,is deemed constant throughout the flowfield
= Linear stress-strain rate relationship t; =-2/3k 0, + u; S;
= Called a linear eddy viscosity model (LEVM)



Target problem - jet-in-crossflow M.
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= A canonical problem for spin-
rocket maneuvering, fuel-air

mixing etc.
= We have experimental data (PIV lso
measurements) on the cross- and ;
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RANS (k-m) simulations - crossplane results 1 .

= Crossplane results for stream

= Computational results (SST) are too round; Kw98 doesn’t have
the mushroom shape; non-symmetric!

= Less intense regions; boundary layer too weak i
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Reducing errors

= Model-form errors

= The linear turbulent stress — strain rate relationship (LEVM) can be
enriched with quadratic and cubic terms (QEVM / CEVM)

Includes terms with vorticity and cross terms with vorticity and strain rate

= However the high-order models have parameters in them
What are the appropriate values for those parameters?

= Parametric uncertainty

= (C,, C,) can be estimated (somewhat) from experimental data

But because of model-form errors and limited experimental data, these
cannot be estimated with much certainty

= We'll use Bayesian inversion and estimate them as PDFs
Quantifies uncertainty in the estimate of the parameters

= Calibration process

= |dentify which of the CEVM parameters can actually be estimated
from experimental data

= Then calibrate those along with (C,, C,); call the full set C=(:, C,, C,)




Calibration details h) e,

= Aims of the calibration
= Calibratetoa M =0.8, J =10.2 interaction

= Learn the form of the high-order eddy viscosity model by fitting to
turbulent stresses measurements on the mid-plane

= Calibrate to crossplane data; check by matching the midplane velocity
profiles

= Technical challenges

= Computational cost of 3D JinC RANS simulation

Replace 3D RANS with a surrogate model i.e., model crossplane
streamwise vorticity m(RANS) (y) = f(y; C), f(:; C) is a curve-fit

Surrogate model = emulators
= Arbitrary combinations of C may be nonphysical

How to build emulators when C are nonsensical?

= What functional form to use for f(:; C)?
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High-order eddy-viscosity model .

" Craft 95 describes a cubic eddy viscosity (CEVM) model
= T; =-2/3k O; + C F(S;, €) + ¢, (S, €y, €) + C,f,(Sy, €;€) ... C5T4(S;,
= F(S;) is linearin§;, fy(:, 5, 1) - f3(:, 5, :) are quadraticin §; & Q;
= f,(:, 5 1) =1, 1) are cubic in S; & €2,
= Qur experimental data, on the midplane, consists of:
= §; & $2; obtained from the measured velocity field

ij ij ij? 8)

" T;andk, also measured

= ¢ (dissipation rate of turbulent KE) cannot be measured

It is approximated by assuming equilibrium of production and dissipation
of turbulent KE.

= Craft’s model prescribes {c, ... ¢;}
= Parameter value obtained from a simple, incompressible turning flow
= May not be valid for transonic JinC interaction
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Estimation of CEVM parameters

= The 180 measurements that we have may not have info that
informs c; ... ¢,

= (Cast the estimation problem as

. 2
min |[¥ - Ac, + 4],
X

= The first half estimates x = {c.} that provide CEVM predictions near Y
= The second half —the A penalty — tries to set as many c, to zero
= Called Shrinkage Regression
= The penalty A is the lynchpin
= If itis too small, we get over-fitting (too many c, survive)
= The best way to get A is via k-fold cross-validation

= The method for solving the optimization problem is LASSO 9
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k-fold cross-validation ) .

= Divide the 180 measurements into 8 “folds” (equal subsets)

= Pick a value of \’
= Pick fold # 1 as the testing set, folds 2-8 as the learning set

= Solve the optimization problem (solve for c) using Y constructed from
the learning set

= Predict the data in the testing set
= Repeat with folds #2, #3 ... as the testing sets
= Obtain the mean error and error bars for A’

= Ultimately you get error as a function of A
= Pick the A with min error

For higher values of A, expect to see lots of ¢, becoming zero

= And predictive errors becoming large

= Nomenclature: The norm of difference (Y{°bs)— Ac) is called
the ‘deviance’ 10




LASSO results ) i

Deviance explained No. of coefficients retained 6 66 66 6677 766643222221
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Looking for a good A
= Craft explains around 28% of deviance
= Aslog(\) increases and # of terms retained decreases, CEVM worsens
= Onegetsh,,and A

1se




Tabulate coefficients and MSE
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Method

Craft -0.1 0.1 0.26 -10 0 -5 5 0.662

A in -0.065 | -0.103 | 1.68 | -4.02 5.7 5.4 -3.64 | 0.386

Mse 0.0 0.0 | 0.455 0.0 0 0 0 0.483

LM -0.0789 | -0.149 | 2.02 | -5.88 0 6.68 | -11.87 | 0.382
"= In(A,,) =-5.11,In(A;.)=-1.75

= Craft’s default parameters are changed when we regress it to data
Results called ‘LM’

= When we LASSO the model using A

15 We're left with just 1 quadratic term

But the model loses much accuracy

Let’s choose A

1se*

Provides a simple model, and keeps the Q2 term
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Calibration of {c,, C,, C,}

= We will calibrate C = (c;, C,, C,)
= QOur model really has a quadratic eddy viscosity model (QEVM)
= Approach:

= Data: Use vorticity measurements on crossplane to estimate C
Useful measurements available at 225 locations (“probes”)

= Estimation procedure: Bayesian calibration using MCMC

= Model: Use surrogate models (emulators) of the RANS simulator
Set of 1275 runs in the parameter space C to make the training data
|dentify a physically realistic space R, use SVMs to model R
Make emulators w(C) = f(c,, C,, C;) with polynomials; valid in R
Use MCMC to create the posterior PDF of C

= Checking results
Draw 100 samples from the posterior PDF

Develop an ensemble of predictions of vorticity and velocity; compare

against measurements
13
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The Bayesian calibration problem  @&s.

* Model experimental values at probe j as o), = o0(C) + 0, e0) ~
N(0, o?)

J ( (J) (J)(C))
( <>|C) Hexp[— S

JEP

» Given prior beliefs & on C, the posterior density (‘the PDF’) is
P(C,olo)x A0 IC,0) n(c,,C,,C,) m_ (0)

* P(C|w,,) is a complicated distribution that has to be described/
visualized by drawing samples from it

* This is done by MCMC

— MCMC describes a random walk in the parameter space to identify
good parameter combination

— Each step of the walk requires a model run to check out the new
parameter combination
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Making emulators - 1 ) .

" Training data
= Sample the parameter space C = {c,, C,, C,}; bounds are known
= Run RANS models at 1275 samples; save vorticity on cross-plane

= Select the top 25% of the training runs
Call this subspace of R
Keeps us out of non-physical parts of the parameter space C

= Making emulators in ‘R
= Model vorticity at probe j wl as a polynomial in C

o =a,+ac,+a,C,+aC, +a,c,C, +a.c,C +a,C,C, +....
= Simplify using AIC; cross validated using repeated random sub-
sampling (100 rounds)

RMSE in Learning & Testing sets should be equal

= Accept all surrogate models that have < 10% error .
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Making emulators - 2 ) .

= Emulators with 10%

accuracy could only be
made for 55/ 224 § ! o
probes |

= 90 with large vorticity Q | - 2000

(circles) S @
= 55 with emulators (+) g ] -0
= Also, the emulators S - -

are only applicable in |
the 'R section of the 2l s
parameter space C S |

' I
0.00 0.01 0.02 0.03 0.04




Making the informative prior

Our emulators are valid only inside R
in the parameter space C
During the optimization (MCMC) we
have to reject parameter
combinations outside ‘R (this is our
prior belief 7, (C))

= We define C(C) =1, for Cin R and C(C)

= -1 for C outside R

= Then the level set T(C) =0 is the
boundary of R

The training set of RANS runs is used

to populate T(C)
We have to “learn” the discriminating
function C(C) =0

= We do that using support vector
machine (SVM) classifiers

1.25 1.30 1.35 1.40 1.45 1.50 1.55

1.20
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Runs in the top 25th percentile
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PDFs from the calibration )

1

= About 60,000 MCMC steps B
to convergence

15
|

= Calibrated values of C
quite different from the
ones from literature
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12

= Next step

10

= Draw 100 samples from
the posterior distribution
and perform RANS 3
simulations o

8

" Compare Wlth = T T T T = T 1 g-l T T T T T
experlmental 12 13 14 15 16 17 400 S0 600 7? 800 600 1000

measurements




QEVM point vortex metrics

= Compare measured and
simulated vorticity fields
using the circulation, the
centroid and radius of
gyration of the vorticity
distribution

= Called the “point vortex
metrics”

= Comparable results using
existing LEVM models
have 20%-70% errors
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~

Normalized predictions (numerical / experimental)

h

Jet-in-crossflow predictions for M = 0.8 and J = 10.2
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QEVM PPT predictions on midplane

Use the 100
RANS
simulations
to obtain
velocity field
on the mid-
plane

Compare
experimental
and
simulated
predictions
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Conclusions

= We are beginning to “fix-up” engineering models with observational data
= Includes both estimating model parameters and enriching closure models
(inferring missing physics in models)
= Methods are Bayesian; fully probabilistic inference (of parameters, at least)
Accommodates uncertainty in estimates due to limited data and shortcomings of
the RANS model (model-form error)

=  We can tackle rather complicated problems using Bayesian inference
= Computational costs are immense, but only for generating training data
= Brittle — we depend on emulators, which can’t always be made
= Can tackle peculiarities of non-physical parameter spaces using informative
priors (classifiers)
= Tools and theories: A mixture of statistics and machine learning
= Bayesian inference, emulators, shrinkage are conventionally statistical
= (Classifiers etc. are purely ML
= As we scale up and confront large data (simulated flowfields etc.) to infer

model-form error, expect MapReduce implementations of these tools
21
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RANS (k-w) simulations — midplane @&.
results

U-defect | V - velocity
= Experimental results in black

= All models are pretty inaccurate (blue and red lines are the non-
symmetric results)




What is MCMC? ) S

= A way of sampling from an arbitrary distribution
= The samples, if histogrammed, recover the distribution

= Efficient and adaptive

= Given a starting point (1 sample), the MCMC chain will sequentially
find the peaks and valleys in the distribution and sample
proportionally

" Ergodic

= Guaranteed that samples will be taken from the entire range of the
distribution

= Drawback

= Generating each sample requires one to evaluate the expression for
the density @

= Not a good idea if mwinvolves evaluating a computationally expensive
model



An example, using MCMC L

= Given: (Y°bs, X), a bunch of n observations

= Believed:y=ax+b
= Model:y°*=ax + b, + ¢, e ~ N0, O)
= We also know a range where a, b and o might lie

i.e. we will use uniform distributions as prior beliefs for a, b, o

= For a given value of (a, b, 0), compute “error” & =y,°* — (ax. + b))

Probability of the set (a, b, o) = IT exp( - €2/0?)

= Solution: it (a, b, o | Y°Ps, X ) =TT exp( - £2/0? ) * (bunch of uniform priors)
= Solution method:

Sample from wt (a, b, o | Y°Ps, X ) using MCMC; save them

Generate a “3D histogram” from the samples to determine which region in the
(a, b, 0) space gives best fit

Histogram values of a, b and o, to get individual PDFs for them
Estimation of model parameters, with confidence intervals!



MCMC, pictorially

" Choose a starting point, P" =
(acurr' b

= Propose anew a, a
:hv(acurw (ja)

" Evaluate i (a,,, bcurr | ...)/
T ( acurr' curr | ) -

= Accepta, ., (i.e.ac,, <-ay0p)

with proEa ility min(1, m)
= Repeat with b

= Loop over till you have
enough samples

curr)

prop
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“good” values of (a, b)

A A
Y
P y

A

v
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What is a SVM classifier? ) e
X
= Given a binary functiony =f(x) as a |
set of points (y;,, x,), y,= (0, 1)
= Find the hyperplane y + Ax = 0 that
separates the x-space intoy=0and y =
1 parts
= Posed as an optimization problem

that maximizes the margin ,

A
. S
o X
26 1
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= |n case of a curved
discriminator, need a
transformation first

= Achieved using kernels

= \We use a cubic kernel
27




